Incorporating Computational Geometry into Second-best Congestion Pricing Design Problem: Algorithm Development and Applications

Takuya MARUYAMA,
Ryota TAKAI, Shohei MIYOKAMI
(Kumamoto University, Japan)

Highlights
- Develop model and algorithm for designing area/cordon-based pricing considering constraints of shape of charging boundary
- Generate realistic area/cordon-based charging boundary & propose index that represents unreality of boundary
- Consider multiple charging boundaries improving social welfare (SW)

Second-best Congestion Pricing Design Problem

Existing Method for Optimizing Charging Boundary

Branch-Tree Method

- Not optimizing center
- Not consider the shape of boundary
- Sometimes generates unrealistic boundary

Proposed Index for Presenting Unreality of Charging Boundary

Additional Operation

Shape Constraints

Fitness Expression

Convex Hull

Shape

Equilibrium

Equilibrium

Proposed Approach

Model: Bi-level Problem

\[
\min \sum_{i=1}^{n} \left(\sum_{j=1}^{m} c_{ij} x_{ij} \right) + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{m} x_{ij} a_{ij} - 1 \right)
\]

\[
\text{Equilibrium (unrefined shape)}
\]

\[
\text{Equilibrium (refined shape)}
\]

\[
\text{Convex hull}
\]

Conclusion

- Develop model & algorithm for designing area/cordon-based pricing considering constraints of charging boundary
- Realistic charging boundary are generated while middle welfare improvement
- Multiple boundaries improves welfare
- Proposed an index that represents the unreality of charging boundary
- Extract the effect of boundary optimization

Acknowledgement

This research is partially supported by JSPS KAKENHI Grant Number 25280047, 16K00416. Also, this poster design were partially supported by Mr. Yoshihiro Sato.

References

SW151%UP

Toll level $1

Convex Cordon Toll

Convex Area Toll

With Convex-Boundary Constraint

Multiple Boundaries

Double Area Toll

Double Cordon Toll

Case Study in Real World Network (Utsunomiya, Japan)

Optimal Area Toll

Optimal Cordon Toll

SW156%UP

Toll level $1.2

Convex Area Toll

Convex Cordon Toll

SW123%UP

Toll level $2

Convex Area Toll

Convex Cordon Toll

SW151%UP

Toll level $1.2

Convex Area Toll

Convex Cordon Toll

SW178%UP

Toll level $2.5

Convex Area Toll

SW230%UP

Toll level $1

Convex Area Toll

Future Studies

Extracting Effect of Boundary Optimization

- Toll level is fixed: Area $2; Congestion $0
- Optimal convex boundary without/with optimalizing center location
- Size of area: Convex Area toll + Circle Cordon Toll

Conclusion